Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(x), y, y) → g(f(x, x, y))
Q is empty.
↳ QTRS
↳ Overlay + Local Confluence
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(x), y, y) → g(f(x, x, y))
Q is empty.
The TRS is overlay and locally confluent. By [15] we can switch to innermost.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(x), y, y) → g(f(x, x, y))
The set Q consists of the following terms:
f(g(x0), x1, x1)
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F(g(x), y, y) → F(x, x, y)
The TRS R consists of the following rules:
f(g(x), y, y) → g(f(x, x, y))
The set Q consists of the following terms:
f(g(x0), x1, x1)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
F(g(x), y, y) → F(x, x, y)
The TRS R consists of the following rules:
f(g(x), y, y) → g(f(x, x, y))
The set Q consists of the following terms:
f(g(x0), x1, x1)
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be oriented strictly and are deleted.
F(g(x), y, y) → F(x, x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3) = x1
g(x1) = g(x1)
Recursive path order with status [2].
Quasi-Precedence: trivial
Status: trivial
The following usable rules [14] were oriented:
none
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(g(x), y, y) → g(f(x, x, y))
The set Q consists of the following terms:
f(g(x0), x1, x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.